Как считать проценты по кредиту?

Банковские предложения поражают своим многообразием и уже более четверти россиян – 27% согласно статистическим данным за 2013 год – имеют кредитные обязательства по одному или нескольким договорам, и их количество с каждым годом увеличивается. Но достаточно часто получается, что заемщик не очень-то доверяет банку и хочет перепроверить все представленные расчеты, но не знает, как считать проценты по кредиту.

Случаются и такие ситуации, что сравнение нескольких на первый взгляд идентичных предложений от разных кредитных организаций показывает различия в сумме переплаты. Причем чем больше размер обязательств, тем сильнее разнятся подобные расчеты. В чем же может быть причина?

Содержание статьи

Какие бывают схемы начисления процентов

В банковской сфере обычно применяется всего две схемы начисления процентов по кредиту, связанные с соответствующими способами погашения: дифференцированные платежи и аннуитет. В первом варианте кредит разбивается на равные части и проценты начисляются на остаток суммы, поэтому платеж по такому методу расчета получается уменьшающимся ежемесячно. Во втором случае проценты начисляются также на остаток, но сумма погашения основного долга с каждым месяцем постепенно увеличивается, благодаря чему равными получаются сами ежемесячные платежи.

как считать проценты по кредиту

Соответственно, и формула расчета для каждой из схем начисления процентов своя, поэтому перед началом вычислений важно уточнить, какой способ погашения предусмотрен в кредитном договоре.

к содержанию ↑

Дифференцированные платежи

Для расчета в случае с дифференцированной схемой погашения кредита используется формула простых процентов:

image008

где

Sp – сумма начисленных процентов,

Sk – сумма остатка по кредиту,

P – ставка по кредиту (в процентах годовых),

t – количество дней в месяце,

Y – количество календарных дней в году (365 или 366).

Пример. Согласно кредитному договору, клиенту 01.01.2014 предоставлена сумма 60 000 руб. под 17% годовых на 1 год с дифференцированными платежами и оплатой в последний день каждого месяца. Соответственно, ежемесячно он должен платить по 5 000 руб. в счет погашения основного долга (60 000 / 12 = 5 000) и проценты по следующей схеме:

image009

image010

image011

Следовательно, клиент за год переплатит 5 502,88 руб., что составляет 9,17% от первоначальной суммы кредита. Наглядно график платежей представлен в таблице:

№ платежа Дата платежа Сумма основного долга Сумма процентов Сумма платежа Остаток по кредиту после совершения платежа
1 31.01.2014 5 000,00 866,30 5 866,30 55 000,00
2 28.02.2014 5 000,00 717,26 5 717,26 50 000,00
3 31.03.2014 5 000,00 721,92 5 721,92 45 000,00
4 30.04.2014 5 000,00 628,77 5 628,77 40 000,00
5 31.05.2014 5 000,00 577,53 5 577,53 35 000,00
6 30.06.2014 5 000,00 489,04 5 489,04 30 000,00
7 31.07.2014 5 000,00 433,15 5 433,15 25 000,00
8 31.08.2014 5 000,00 360,96 5 360,96 20 000,00
9 30.09.2014 5 000,00 279,45 5 279,45 15 000,00
10 31.10.2014 5 000,00 216,58 5 216,58 10 000,00
11 30.11.2014 5 000,00 139,73 5 139,73 5 000,00
12 31.12.2014 5000,00 72,19 5 072,19 0,00
Итого:   60 000,00 5 502,88 65 502,88  

Но чаще встречаются ситуации, когда оплата производится не в последний день месяца, а в начале или середине, также при дифференцированной схеме погашения может не браться платеж в месяце выдачи кредита.

Пример. Клиенту предоставлен кредит 15.01.2014 в размере 60 000 руб. под 17% годовых на 1 год с дифференцированными платежами и оплатой 20 числа ежемесячно начиная со следующего месяца. Следовательно, платеж будет состоять из оплаты основного долга по 5 000 руб. и процентов:

image012

image013

image014

image015

image016

image017

image018

В этом случае первый платеж получится меньше последующих, так как расчет процентов производится не за полный месяц, а всего за 16 дней. Это связано с тем, что кредит был взят 15 января (31 – 15 = 16). Из-за того, что оплата идет в следующем месяце за предыдущий, переплата получится чуть больше, чем в первом примере: 5 596,03 руб., или 9,33% от первоначальной суммы кредита. Все платежи представлены в таблице:

№ платежа Дата платежа Сумма основного долга Сумма процентов Сумма платежа Остаток по кредиту после совершения платежа
1 20.02.2014 5 000,00 447,12 5 447,12 55 000,00
2 20.03.2014 5 000,00 763,84 5 763,84 50 000,00
3 20.04.2014 5 000,00 768,49 5 768,49 45 000,00
4 20.05.2014 5 000,00 675,34 5 675,34 40 000,00
5 20.06.2014 5 000,00 624,11 5 624,11 35 000,00
6 20.07.2014 5 000,00 535,62 5 535,62 30 000,00
7 20.08.2014 5 000,00 479,73 5 479,73 25 000,00
8 20.09.2014 5 000,00 407,53 5 407,53 20 000,00
9 20.10.2014 5 000,00 326,03 5 326,03 15 000,00
10 20.11.2014 5 000,00 263,15 5 263,15 10 000,00
11 20.12.2014 5 000,00 186,30 5 186,30 5 000,00
12 20.01.2015 5 000,00 118,77 5 118,77 0,00
Итого:   60 000,00 5 596,03 65 596,03  

При расчетах следует учитывать также, что при выпадении даты платежа на выходной день (например, 20.04.2014 – воскресенье) выплата, согласно Гражданскому кодексу РФ, переносится на следующий рабочий день (то есть по факту вместо 20.04.2014 оплата будет 21.04.2014). Соответственно, и расчет процентов на следующий месяц должен быть скорректирован из учета, что остаток основного долга не уменьшился до фактической даты платежа. Аналогично стоит учитывать и досрочные платежи.

к содержанию ↑

Аннуитет

Немного труднее будет считать проценты по кредиту с аннуитетной схемой погашения. В данном случае применяется уже формула сложных процентов, при этом существует два варианта вычислений.

В первом случае все платежи полностью равны между собой:

image019

где

Sa – сумма аннуитетного платежа,

Sk – сумма кредита,

P – ставка по кредиту (в процентах годовых),

t – количество платежей по кредиту.

Пример. Клиент получил кредит в размере 60 000 руб. под 17% годовых сроком на 1 год с оплатой по схеме аннуитета. Тогда его ежемесячный платеж составит 5 472,29 руб.:

image020

Соответственно, общая сумма всех платежей будет равна 65 667,48 руб. (5 472,29 * 12 = 65 667,48), а переплата составит 5 667,48 руб., или 9,45% от первоначальной суммы кредита.

Такой метод расчета применяют не все банки. Многие кредитные организации используют стандартную формулу АИЖК (Агентство по ипотечному жилищному кредитованию), по которой первый платеж не считается аннуитетным и состоит только из суммы процентов, оплата в остальные месяцы одинаковая:

image021

где

Sa – сумма аннуитетного платежа,

Sk – сумма кредита,

P – ставка по кредиту (в процентах годовых),

t – количество платежей по кредиту.

Первый платеж рассчитывается по формуле для дифференцированной схемы.

Пример. Клиент получил кредит 15.01.2014 в сумме 60 000 руб. под 17% годовых сроком на 1 год с аннуитетной схемой погашения. Его ежемесячный платеж составит 5 929,05 руб.:

image022

При этом первый платеж будет равен только сумме процентов за январь:

image023

Следовательно, всего клиент заплатит банку 65 666,67 руб. (447,12 + 5 929,05 * 11 = 65 666,67), а его переплата составит 5 666,67 руб., или 9,44% от первоначальной суммы кредита.

Таким образом, размер ежемесячного платежа и сумма переплаты напрямую зависят от того, какую формулу начисления процентов использует банк.

к содержанию ↑

Какая схема начисления выгоднее

После ответа на вопрос, как считать годовые проценты по кредиту, можно определить достоинства и недостатки обеих схем.

Наиболее выгодным для клиента с точки зрения переплаты получается начисление процентов по дифференцированной схеме с оплатой начиная с месяца выдачи кредита. Однако в этом случае кредитная нагрузка в первые месяцы выплат будет достаточно значительной по сравнению с аннуитетом.

Самой невыгодной системой является аннуитет по стандартам АИЖК, применяемый в большинстве ипотечных продуктов. В этом случае расходы клиента полностью зависят от даты выдачи кредита – чем ближе к началу месяца, тем больше первый платеж и, соответственно, общая переплата. При этом кредитная нагрузка, как правило, превышает даже расчет по дифференцированной схеме.

Большинство банков в потребительском кредитовании используют простую схему аннуитета с полностью равными платежами, позволяющую заемщику не задумываться о графике и ежемесячно оплачивать одинаковые суммы. Некоторые банки предлагают дифференцированное погашение с первым платежом в следующем за датой выдачи месяце как альтернативу аннуитету.